

Génétiques: Allèles multiples

Biologie 12

Allèles multiples

- Plusieurs gènes ont plus qu'une allèle.
- Une individus ne possède pas plus que 2 allèles pour le trait mais, on peut avoir des différentes pairs d'allèles lorsqu'il existe des allèles multiples.

Exemple: Allèles Multiples

- Les groupes sanguins sont contrôlés par 3 allèles: I^A, I^B et i.
- Allèles I^A et I^B sont dominant à i.
- I^A et I^B sont codominant.

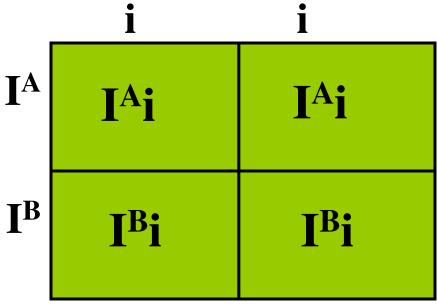
Phénotype (type de sang)	Génotypes	
Α	I ^A I ^A ou I ^A i	
В	I ^B I ^B ou I ^B i	
AB	I A I B	
0	ii	

Groupes sanguins

Problème: Allèles Multiples

 Montre une croise entre une mère qui est Groupe O et un père qui est Groupe sanguin AB.

GÉNOTYPES:

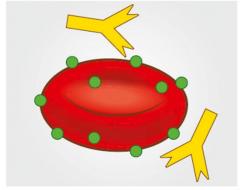

- I^Ai (2) I^Bi (2)

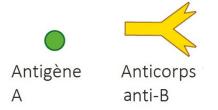
- ratio 1:1

PHÉNOTYPES:

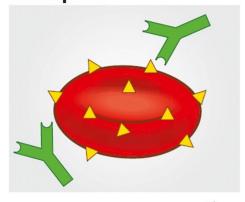
- groupe sanguin A (2); groupe sanguine B (2)

- ratio 1:1

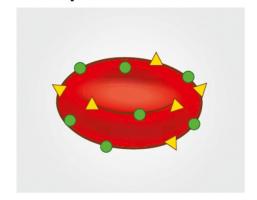



Problème 2: Allèles Multiples

 Montre une croise entre une mère qui est hétérozygote pour le groupe sanguin B et un père qui est hétérozygote pour le groupe sanguin A.

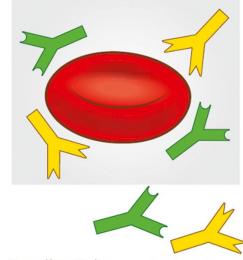

<u>GÉNOTYPES:</u>	$\mathbf{I}^{\mathbf{A}}$	i
$-I^{A}I^{B}(1); I^{B}i(1);$	- A - D	~D4
I ^A i (1); ii (1)	IAIB	$\mathbf{I}^{\mathbf{B}}\mathbf{i}$
- ratio 1:1:1:1		
PHÉNOTYPES:	T A •	• •
-groupe AB (1); groupe B (1) i	I ^A i	ii
groupe A (1); groupe O (1)		
- ratio 1:1:1:1		

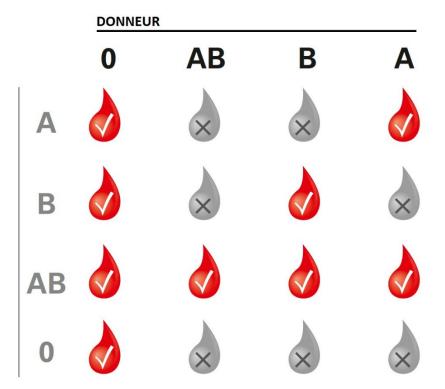
Groupe A


Groupe B

Antigène Anticoprs
B anti-A

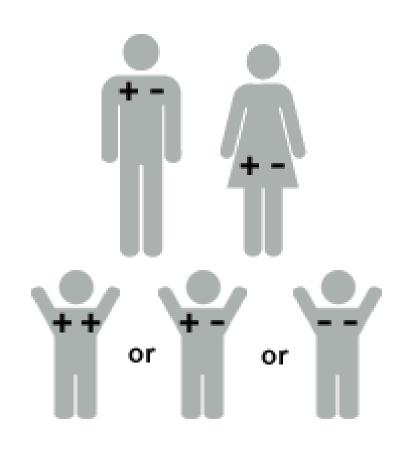
Le corps produit des anticorps contre toutes les cellules sanguines étrangères, les reconnaît et les combat.


Groupe AB

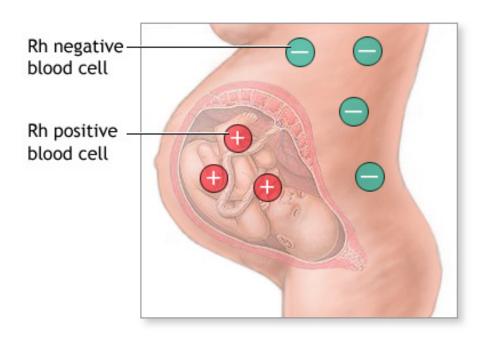


Antigène Pas d'anticorps A & B

Groupe O


Le facteur Rhésus:

- Le facteur Rhésus, aussi nommé le facteur Rh, reçoit sont nom des expériences de scientifiques Karl Landsteiner et Alexander S. Weiner, effectuée en 1937.
- Impliquait des lapins: lorsqu'ils étaient injecter avec les globules rouges des singes Rhésus, les lapins produisaient une antigène présent dans les globules rouges de plusieurs humains.


Le facteur Rhésus:

- Le facteur Rhésus est une antigène (protéine) qui existe sur la surface des globules rouges.
 - ✓ Si une personne à soit deux gènes (+) pour Rh ou une gène (+)Rh et une (-)Rh, ils vont tester Rh(+).
 - ✓ Une personne vas testé négative seulement s'il possède deux (-).

L'importance du Facteur Rh et les groups sanguins ABO?

- C'est important en termes des bébés.
 - ✓ Exemple: Une mère Rh(-) a un bébé Rh(+), elle vas faire des anticorps contre le fœtus Rh(+).

Aujourd'hui:

- Fiche pratique:
 - Groupes sanguins.
 - Dominance incomplète et codominance.
- Travaillez à finir fiche dihybride.

Jeudi: Tâche en classe

Vendredi: Laboratoire #7

Semaine prochaine: Test